Extensions 1→N→G→Q→1 with N=C22 and Q=C5xSD16

Direct product G=NxQ with N=C22 and Q=C5xSD16
dρLabelID
SD16xC2xC10160SD16xC2xC10320,1572

Semidirect products G=N:Q with N=C22 and Q=C5xSD16
extensionφ:Q→Aut NdρLabelID
C22:1(C5xSD16) = C5xC8:8D4φ: C5xSD16/C40C2 ⊆ Aut C22160C2^2:1(C5xSD16)320,966
C22:2(C5xSD16) = C5xC22:SD16φ: C5xSD16/C5xD4C2 ⊆ Aut C2280C2^2:2(C5xSD16)320,951
C22:3(C5xSD16) = C5xQ8:D4φ: C5xSD16/C5xQ8C2 ⊆ Aut C22160C2^2:3(C5xSD16)320,949

Non-split extensions G=N.Q with N=C22 and Q=C5xSD16
extensionφ:Q→Aut NdρLabelID
C22.1(C5xSD16) = C5xD8.C4φ: C5xSD16/C40C2 ⊆ Aut C221602C2^2.1(C5xSD16)320,164
C22.2(C5xSD16) = C5xC23.31D4φ: C5xSD16/C5xD4C2 ⊆ Aut C2280C2^2.2(C5xSD16)320,133
C22.3(C5xSD16) = C5xM5(2):C2φ: C5xSD16/C5xD4C2 ⊆ Aut C22804C2^2.3(C5xSD16)320,166
C22.4(C5xSD16) = C5xC8.17D4φ: C5xSD16/C5xD4C2 ⊆ Aut C221604C2^2.4(C5xSD16)320,167
C22.5(C5xSD16) = C5xC8.Q8φ: C5xSD16/C5xD4C2 ⊆ Aut C22804C2^2.5(C5xSD16)320,170
C22.6(C5xSD16) = C5xC23.47D4φ: C5xSD16/C5xD4C2 ⊆ Aut C22160C2^2.6(C5xSD16)320,984
C22.7(C5xSD16) = C5xC22.SD16φ: C5xSD16/C5xQ8C2 ⊆ Aut C2280C2^2.7(C5xSD16)320,132
C22.8(C5xSD16) = C5xC23.46D4φ: C5xSD16/C5xQ8C2 ⊆ Aut C22160C2^2.8(C5xSD16)320,982
C22.9(C5xSD16) = C5xC22.4Q16central extension (φ=1)320C2^2.9(C5xSD16)320,145
C22.10(C5xSD16) = C10xD4:C4central extension (φ=1)160C2^2.10(C5xSD16)320,915
C22.11(C5xSD16) = C10xQ8:C4central extension (φ=1)320C2^2.11(C5xSD16)320,916
C22.12(C5xSD16) = C10xC4.Q8central extension (φ=1)320C2^2.12(C5xSD16)320,926

׿
x
:
Z
F
o
wr
Q
<